Development of an effective polarizable bond method for biomolecular simulation.

نویسندگان

  • Xudong Xiao
  • Tong Zhu
  • Chang G Ji
  • John Z H Zhang
چکیده

An effective polarizable bond (EPB) model has been developed for computer simulation of proteins. In this partial polarizable approach, all polar groups of amino acids are treated as polarizable, and the relevant polarizable parameters were determined by fitting to quantum calculated electrostatic properties of these polar groups. Extensive numerical tests on a diverse set of proteins (including 1IEP, 1MWE, 1NLJ, 4COX, 1PGB, 1K4C, 1MHN, 1UBQ, 1IGD) showed that this EPB model is robust in MD simulation and can correctly describe the structure and dynamics of proteins (both soluble and membrane proteins). Comparison of the computed hydrogen bond properties and dynamics of proteins with experimental data and with results obtained from the nonpolarizable force field clearly demonstrated that EPB can produce results in much better agreement with experiment. The averaged deviation of the simulated backbone N-H order parameter of the B3 immunoglobobulin-binding domain of streptococcal protein G from experimental observation is 0.0811 and 0.0332 for Amber99SB and EPB, respectively. This new model inherited the effective character of the classic force field and the fluctuating feature of previous polarizable models. Different from other polarizable models, the polarization cost energy is implicitly included in the present method. As a result, the present method avoids the problem of over polarization and is numerically stable and efficient for dynamics simulation. Finally, compared to the traditional fixed AMBER charge model, the present method only adds about 5% additional computational time and is therefore highly efficient for practical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct folding simulation of helical proteins using an effective polarizable bond force field.

We report a direct folding study of seven helical proteins (, Trpcage, , C34, N36, , ) ranging from 17 to 53 amino acids through standard molecular dynamics simulations using a recently developed polarizable force field-Effective Polarizable Bond (EPB) method. The backbone RMSDs, radius of gyrations, native contacts and native helix content are in good agreement with the experimental results. C...

متن کامل

Fast evaluation of polarizable forces.

Polarizability is considered to be the single most significant development in the next generation of force fields for biomolecular simulations. However, the self-consistent computation of induced atomic dipoles in a polarizable force field is expensive due to the cost of solving a large dense linear system at each step of a simulation. This article introduces methods that reduce the cost of com...

متن کامل

Computational Study of PCSK9-EGFA Complex with Effective Polarizable Bond Force Field

Inhibiting of Proprotein Convertase Subtilisin/Kexin-type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR) binding is an effective way for reducing Low Density Lipoprotein cholesterol (LDL-C). Understanding the interaction between PCSK9 and LDLR is useful for PCSK9 inhibitor design. In this work, MD simulations with the standard (non-polarizable) AMBER force field and effective polarizable...

متن کامل

Polarizable atomic multipole X-ray refinement: application to peptide crystals

Recent advances in computational chemistry have produced force fields based on a polarizable atomic multipole description of biomolecular electrostatics. In this work, the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field is applied to restrained refinement of molecular models against X-ray diffraction data from peptide crystals. A new formalism is also de...

متن کامل

QM/MM-Based Fitting of Atomic Polarizabilities for Use in Condensed-Phase Biomolecular Simulation.

Accounting for electronic polarization effects in biomolecular simulation (by using a polarizable force field) can increase the accuracy of simulation results. However, the use of gas-phase estimates of atomic polarizabilities αi usually leads to overpolarization in condensed-phase systems. In the current work, a combined QM/MM approach has been employed to obtain condensed-phase estimates of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 117 48  شماره 

صفحات  -

تاریخ انتشار 2013